Module gopy.sorting.heap
Heaps can be used in sorting an array. In max-heaps, maximum element will always be at the root. Heap Sort uses this property of heap to sort the array.
Consider an array Arr which is to be sorted using Heap Sort.
- Initially build a max heap of elements in Arr.The root element, that is Arr[1], will contain maximum element of Arr. After that, swap this element with the last element of
- Arr and heapify the max heap excluding the last element which is already in its correct position and then decrease the length of heap by one.
- Repeat the step 2, until all the elements are in their correct position.
Psuedocode:
void heap_sort(int Arr[ ])
{
int heap_size = N;
build_maxheap(Arr);
for(int i = N; i >= 2 ; i-- )
{
swap|(Arr[ 1 ], Arr[ i ]);
heap_size = heap_size - 1;
max_heapify(Arr, 1, heap_size);
}
}
Complexity:
max_heapify
has complexity O(logN)
, build_maxheap
has complexity O(N)
and we run max_heapify
N−1
times in heap_sort
function, therefore complexity of heap_sort
function is O(NlogN)
.
Expand source code
"""
Heaps can be used in sorting an array. In max-heaps, maximum element will always be
at the root. Heap Sort uses this property of heap to sort the array.
Consider an array Arr which is to be sorted using Heap Sort.
- Initially build a max heap of elements in Arr.The root element, that is Arr[1], will
contain maximum element of Arr. After that, swap this element with the last element of
- Arr and heapify the max heap excluding the last element which is already in its correct
position and then decrease the length of heap by one.
- Repeat the step 2, until all the elements are in their correct position.
### Psuedocode:
```
void heap_sort(int Arr[ ])
{
int heap_size = N;
build_maxheap(Arr);
for(int i = N; i >= 2 ; i-- )
{
swap|(Arr[ 1 ], Arr[ i ]);
heap_size = heap_size - 1;
max_heapify(Arr, 1, heap_size);
}
}
```
### Complexity:
`max_heapify` has complexity `O(logN)`, `build_maxheap` has complexity `O(N)` and we run `max_heapify`
`N−1` times in `heap_sort` function, therefore complexity of `heap_sort` function is `O(NlogN)`.
"""
def heapsort(array):
build_max_heap(array)
for i in range(len(array) - 1, 0, -1):
array[0], array[i] = array[i], array[0]
max_heapify(array, index=0, size=i)
return array
def parent(i):
return (i - 1)//2
def left(i):
return 2*i + 1
def right(i):
return 2*i + 2
def build_max_heap(array):
length = len(array)
start = parent(length - 1)
while start >= 0:
max_heapify(array, index=start, size=length)
start = start - 1
def max_heapify(array, index, size):
l = left(index)
r = right(index)
if (l < size and array[l] > array[index]):
largest = l
else:
largest = index
if (r < size and array[r] > array[largest]):
largest = r
if (largest != index):
array[largest], array[index] = array[index], array[largest]
max_heapify(array, largest, size)
def sort(array):
return heapsort(array)
Functions
def build_max_heap(array)
-
Expand source code
def build_max_heap(array): length = len(array) start = parent(length - 1) while start >= 0: max_heapify(array, index=start, size=length) start = start - 1
def heapsort(array)
-
Expand source code
def heapsort(array): build_max_heap(array) for i in range(len(array) - 1, 0, -1): array[0], array[i] = array[i], array[0] max_heapify(array, index=0, size=i) return array
def left(i)
-
Expand source code
def left(i): return 2*i + 1
def max_heapify(array, index, size)
-
Expand source code
def max_heapify(array, index, size): l = left(index) r = right(index) if (l < size and array[l] > array[index]): largest = l else: largest = index if (r < size and array[r] > array[largest]): largest = r if (largest != index): array[largest], array[index] = array[index], array[largest] max_heapify(array, largest, size)
def parent(i)
-
Expand source code
def parent(i): return (i - 1)//2
def right(i)
-
Expand source code
def right(i): return 2*i + 2
def sort(array)
-
Expand source code
def sort(array): return heapsort(array)