Module gopy.dfs.sudoku_solver
It's similar to how human solve Sudoku.
create a hash table (dictionary) val to store possible values in every location. Each time, start from the location with fewest possible values, choose one value from it and then update the board and possible values at other locations. If this update is valid, keep solving (DFS). If this update is invalid (leaving zero possible values at some locations) or this value doesn't lead to the solution, undo the updates and then choose the next value. Since we calculated val at the beginning and start filling the board from the location with fewest possible values, the amount of calculation and thus the runtime can be significantly reduced:
The run time is 48-68 ms on LeetCode OJ, which seems to be among the fastest python solutions here.
The PossibleVals function may be further simplified/optimized, but it works just fine for now. (it would look less lengthy if we are allowed to use numpy array for the board lol).
Expand source code
"""
It's similar to how human solve Sudoku.
create a hash table (dictionary) val to store possible values in every location.
Each time, start from the location with fewest possible values, choose one value
from it and then update the board and possible values at other locations.
If this update is valid, keep solving (DFS). If this update is invalid (leaving
zero possible values at some locations) or this value doesn't lead to the
solution, undo the updates and then choose the next value.
Since we calculated val at the beginning and start filling the board from the
location with fewest possible values, the amount of calculation and thus the
runtime can be significantly reduced:
The run time is 48-68 ms on LeetCode OJ, which seems to be among the fastest
python solutions here.
The PossibleVals function may be further simplified/optimized, but it works just
fine for now. (it would look less lengthy if we are allowed to use numpy array
for the board lol).
"""
class Sudoku:
def __init__ (self, board, row, col):
self.board = board
self.row = row
self.col = col
self.val = self.possible_values()
def possible_values(self):
a = "123456789"
d, val = {}, {}
for i in range(self.row):
for j in range(self.col):
ele = self.board[i][j]
if ele != ".":
d[("r", i)] = d.get(("r", i), []) + [ele]
d[("c", j)] = d.get(("c", j), []) + [ele]
d[(i//3, j//3)] = d.get((i//3, j//3), []) + [ele]
else:
val[(i,j)] = []
for (i,j) in val.keys():
inval = d.get(("r",i),[])+d.get(("c",j),[])+d.get((i/3,j/3),[])
val[(i,j)] = [n for n in a if n not in inval ]
return val
def solve(self):
if len(self.val)==0:
return True
kee = min(self.val.keys(), key=lambda x: len(self.val[x]))
nums = self.val[kee]
for n in nums:
update = {kee:self.val[kee]}
if self.valid_one(n, kee, update): # valid choice
if self.solve(): # keep solving
return True
self.undo(kee, update) # invalid choice or didn't solve it => undo
return False
def valid_one(self, n, kee, update):
self.board[kee[0]][kee[1]] = n
del self.val[kee]
i, j = kee
for ind in self.val.keys():
if n in self.val[ind]:
if ind[0]==i or ind[1]==j or (ind[0]/3,ind[1]/3)==(i/3,j/3):
update[ind] = n
self.val[ind].remove(n)
if len(self.val[ind])==0:
return False
return True
def undo(self, kee, update):
self.board[kee[0]][kee[1]]="."
for k in update:
if k not in self.val:
self.val[k]= update[k]
else:
self.val[k].append(update[k])
return None
def __str__(self):
"""[summary]
Generates a board representation as string.
Returns:
[str] -- [board representation]
"""
resp = ""
for i in range(self.row):
for j in range(self.col):
resp += " {0} ".format(self.board[i][j])
resp += "\n"
return resp
Classes
class Sudoku (board, row, col)
-
Expand source code
class Sudoku: def __init__ (self, board, row, col): self.board = board self.row = row self.col = col self.val = self.possible_values() def possible_values(self): a = "123456789" d, val = {}, {} for i in range(self.row): for j in range(self.col): ele = self.board[i][j] if ele != ".": d[("r", i)] = d.get(("r", i), []) + [ele] d[("c", j)] = d.get(("c", j), []) + [ele] d[(i//3, j//3)] = d.get((i//3, j//3), []) + [ele] else: val[(i,j)] = [] for (i,j) in val.keys(): inval = d.get(("r",i),[])+d.get(("c",j),[])+d.get((i/3,j/3),[]) val[(i,j)] = [n for n in a if n not in inval ] return val def solve(self): if len(self.val)==0: return True kee = min(self.val.keys(), key=lambda x: len(self.val[x])) nums = self.val[kee] for n in nums: update = {kee:self.val[kee]} if self.valid_one(n, kee, update): # valid choice if self.solve(): # keep solving return True self.undo(kee, update) # invalid choice or didn't solve it => undo return False def valid_one(self, n, kee, update): self.board[kee[0]][kee[1]] = n del self.val[kee] i, j = kee for ind in self.val.keys(): if n in self.val[ind]: if ind[0]==i or ind[1]==j or (ind[0]/3,ind[1]/3)==(i/3,j/3): update[ind] = n self.val[ind].remove(n) if len(self.val[ind])==0: return False return True def undo(self, kee, update): self.board[kee[0]][kee[1]]="." for k in update: if k not in self.val: self.val[k]= update[k] else: self.val[k].append(update[k]) return None def __str__(self): """[summary] Generates a board representation as string. Returns: [str] -- [board representation] """ resp = "" for i in range(self.row): for j in range(self.col): resp += " {0} ".format(self.board[i][j]) resp += "\n" return resp
Methods
def possible_values(self)
-
Expand source code
def possible_values(self): a = "123456789" d, val = {}, {} for i in range(self.row): for j in range(self.col): ele = self.board[i][j] if ele != ".": d[("r", i)] = d.get(("r", i), []) + [ele] d[("c", j)] = d.get(("c", j), []) + [ele] d[(i//3, j//3)] = d.get((i//3, j//3), []) + [ele] else: val[(i,j)] = [] for (i,j) in val.keys(): inval = d.get(("r",i),[])+d.get(("c",j),[])+d.get((i/3,j/3),[]) val[(i,j)] = [n for n in a if n not in inval ] return val
def solve(self)
-
Expand source code
def solve(self): if len(self.val)==0: return True kee = min(self.val.keys(), key=lambda x: len(self.val[x])) nums = self.val[kee] for n in nums: update = {kee:self.val[kee]} if self.valid_one(n, kee, update): # valid choice if self.solve(): # keep solving return True self.undo(kee, update) # invalid choice or didn't solve it => undo return False
def undo(self, kee, update)
-
Expand source code
def undo(self, kee, update): self.board[kee[0]][kee[1]]="." for k in update: if k not in self.val: self.val[k]= update[k] else: self.val[k].append(update[k]) return None
def valid_one(self, n, kee, update)
-
Expand source code
def valid_one(self, n, kee, update): self.board[kee[0]][kee[1]] = n del self.val[kee] i, j = kee for ind in self.val.keys(): if n in self.val[ind]: if ind[0]==i or ind[1]==j or (ind[0]/3,ind[1]/3)==(i/3,j/3): update[ind] = n self.val[ind].remove(n) if len(self.val[ind])==0: return False return True