Module gopy.backtracking.sum_of_subsets
The sum-of-subsetsproblem states that a set of non-negative integers, and a value M, determine all possible subsets of the given set whose summation sum equal to given M.
Summation of the chosen numbers must be equal to given number M and one number can be used only once.
Expand source code
"""
The sum-of-subsetsproblem states that a set of non-negative integers, and a value M,
determine all possible subsets of the given set whose summation sum equal to given M.
Summation of the chosen numbers must be equal to given number M and one number can
be used only once.
"""
def generate_sum_of_subsets_soln(nums, max_sum):
result = []
path = []
num_index = 0
remaining_nums_sum = sum(nums)
create_state_space_tree(nums, max_sum, num_index, path, result, remaining_nums_sum)
return result
def create_state_space_tree(nums, max_sum, num_index, path, result, remaining_nums_sum):
"""
Creates a state space tree to iterate through each branch using DFS.
It terminates the branching of a node when any of the two conditions
given below satisfy.
This algorithm follows depth-fist-search and backtracks when the node is not branchable.
"""
if sum(path) > max_sum or (remaining_nums_sum + sum(path)) < max_sum:
return
if sum(path) == max_sum:
result.append(path)
return
for num_index in range(num_index, len(nums)):
create_state_space_tree(
nums,
max_sum,
num_index + 1,
path + [nums[num_index]],
result,
remaining_nums_sum - nums[num_index],
)
"""
remove the comment to take an input from the user
print("Enter the elements")
nums = list(map(int, input().split()))
print("Enter max_sum sum")
max_sum = int(input())
"""
nums = [3, 34, 4, 12, 5, 2]
max_sum = 9
result = generate_sum_of_subsets_soln(nums, max_sum)
print(*result)
Functions
def create_state_space_tree(nums, max_sum, num_index, path, result, remaining_nums_sum)
-
Creates a state space tree to iterate through each branch using DFS. It terminates the branching of a node when any of the two conditions given below satisfy. This algorithm follows depth-fist-search and backtracks when the node is not branchable.
Expand source code
def create_state_space_tree(nums, max_sum, num_index, path, result, remaining_nums_sum): """ Creates a state space tree to iterate through each branch using DFS. It terminates the branching of a node when any of the two conditions given below satisfy. This algorithm follows depth-fist-search and backtracks when the node is not branchable. """ if sum(path) > max_sum or (remaining_nums_sum + sum(path)) < max_sum: return if sum(path) == max_sum: result.append(path) return for num_index in range(num_index, len(nums)): create_state_space_tree( nums, max_sum, num_index + 1, path + [nums[num_index]], result, remaining_nums_sum - nums[num_index], )
def generate_sum_of_subsets_soln(nums, max_sum)
-
Expand source code
def generate_sum_of_subsets_soln(nums, max_sum): result = [] path = [] num_index = 0 remaining_nums_sum = sum(nums) create_state_space_tree(nums, max_sum, num_index, path, result, remaining_nums_sum) return result